Sanyo SM-GA0005 Microwave Oven User Manual


 
5
1
1
.
.
T
T
H
H
E
E
H
H
E
E
A
A
T
T
I
I
N
N
G
G
P
P
R
R
I
I
N
N
C
C
I
I
P
P
L
L
E
E
O
O
F
F
M
M
I
I
C
C
R
R
O
O
W
W
A
A
V
V
E
E
Microwave is one kind of radio wave whose wavelength is very short, frequency is very high. Therefore, it is
called ultrahigh frequency electromagnetic wave. Microwave can heat food mainly result in the mutual affect of
the food in the microwave field and the microwave field itself.
Under the affect of microwave field, the thermal effect mechanism produced from the mutual affect of the
microwave and the food includes two aspects. One is Dielectric loss of polar molecule; the other is conductive
loss of ion.
Usually, food is constituted of organism (plant and animal). The organism is formed by all kinds of polar water
molecule, polar protein molecule, and all sorts of saltion. The center of gravity of the positive and negative charge
in the molecule is not coinciding. In normal condition, the molecule is in irregular order due to its thermal action,
thus the food do not appear polarity. (FIG.1-la). Under the action of outer electric field, the positive end of the
polar molecule trend to the negative electric field, the negative end of polar molecule trend to the positive electric
field, and somewhat arrange in order through the direction of the electric field (FIG.1-1c). This phenomenon
usually is called “TORQUE POLARITY”. When the outer electric field apply for the opposite polarity, the polar
molecule then arrange an opposite direction order accordingly (FIG.1-1b). If the direction of the outer electric field
changed repeatedly, the polar molecule would repeatedly sway accordingly. During the swaying, it is
understanding that the polar molecule would produce heat due to somewhat similar friction among them. When
the electric field is applied for ultrahigh frequent microwave field from the outside, its direction would change tens
billion times per second, so do the molecule. This kind of molecule swaying producing similar frictional heat from
the interference and block of the action strength among the molecule, and changed to microscopic microwave
heating. Microwave heating not only concerned the nature of the matter itself, but also closely connected with the
electric strength and frequency. When the frequency is low, the molecule swaying rate and the acute degree of
the mutual friction among the molecule is low, and would produce much heat. When the frequency is too high, as
the swing of the polar molecule is with rotating inertia, it made the swing do not in line with the changing rhythm
of the electric field because of the friction drag, thus, actually lowed the polar molecule swaying speed. The
friction dragging degree is concerning about the magnelectric wave frequency, polar molecule shape, and the
matter’s sticky degree. To different matter’s molecule, there is different special frequency zone. Those absorbing
microwave energy from this zone are most capable to turn microwave energy to heat energy.
Apart from the above said action, there is another action which is electric ion under the action of microwave field,
act fiercely accompanied with the acceleration of electric field. The positive ion transfer to the negative polarity of
the field while the negative ion does opposite. Accompanying with the changing electric field, the electric ion
hanging accordingly. During the transferring, heat produced with the crash among the ion. This kind of action
takes the main effect to those microwaves heating of high salt molecule.
No matter it is the polar molecule swaying or the ion transferring, they both are turning the microwave energy
which the heating matter got from the microwave field to heat energy. From the analysis of theory, we can draw
such a conclusion that the power which a unit of volume matter absorbed from the microwave field as the
following formula:
Pa=KE fErtgδ
Pa Stands for the power the heated matter adsorbed from the microwave field.
Fig.1-1
(a) (b) (c)